此题要利用三角形函数性质,不知道你学了没有
设
x=sint,sint∈(0,1).t∈(0,π/2)
f(x)=√3x+√(1-x^2)
=√3sint+cost
=2sin(t+π/6)
t∈(0,π/2)
t+π/6∈(π/6,2π/3)
2sin(t+π/6)在(π/6,π/2】增在(π/2,2π/3)减
即f(x)在(0,π/3】增,在(π/3,π/2)减
x=sint
增区间是(0,√3/2]
减区间是(√3/2,1)
f(x)=√3x+√(1-x^2)
图像
此题要利用三角形函数性质,不知道你学了没有
设
x=sint,sint∈(0,1).t∈(0,π/2)
f(x)=√3x+√(1-x^2)
=√3sint+cost
=2sin(t+π/6)
t∈(0,π/2)
t+π/6∈(π/6,2π/3)
2sin(t+π/6)在(π/6,π/2】增在(π/2,2π/3)减
即f(x)在(0,π/3】增,在(π/3,π/2)减
x=sint
增区间是(0,√3/2]
减区间是(√3/2,1)
f(x)=√3x+√(1-x^2)
图像