如何用导数求曲线的切线方程?如圆.(x-a)^2+(y-b)^2=r^2,过点(x0,y0)(在圆上)的切线为(x0-a

1个回答

  • (x-a)^2+(y-b)^2=r^2两边对x求导:

    [(x-a)^2+(y-b)^2]' = (r^2)'

    [(x-a)^2]' + [(y-b)^2]' = 0 (和的导数等于导数的和; 常数的导数为0)

    2(x-a)*(x-a)' + 2(y-b)*(y-b)' = 0 (x^n的导数为nx^(n-1) )

    2(x-a) + 2(y-b)y' = 0

    y' = -(x-a)/(y-b)

    点(x0,y0)处的切线斜率为:y' = -(x0 -a)/(y0 -b)

    点斜式:y - y0 = [-(x0 -a)/(y0 -b)]*(x - x0)

    (x0 -a) (x - x0) + (y0 - b)(y - y0) = 0

    (x0 -a) (x - a + a - x0) + (y0 - b)(y - b + b- y0) = 0

    展开:(x0 -a) (x - a) - (x0 - a)^2 + (y0 - b)(y - b) - (y0 - b)^2 = 0

    (x0 -a) (x - a) - + (y0 - b)(y - b) = (x0 - a)^2 + (y0 - b)^2

    点(x0,y0)在圆上,(x0 - a)^2 + (y0 - b)^2 = r^2

    (x0-a)(x-a)+(y0-b)(y-b)=r^2

    y'是y的导数(即dy/dx)