f(x)=2(cosx)^2+2√3sinxcosx+a
=cos2x+√3sin2x+a+1
=2[(1/2)cos2x+(√3/2)sin2x]+a+1
=2sin(2x+π/6)+a+1
X属于【0,π/2】,方程f(X)=0有唯一解
-2sin(2x+π/6)-1=a
0
f(x)=2(cosx)^2+2√3sinxcosx+a
=cos2x+√3sin2x+a+1
=2[(1/2)cos2x+(√3/2)sin2x]+a+1
=2sin(2x+π/6)+a+1
X属于【0,π/2】,方程f(X)=0有唯一解
-2sin(2x+π/6)-1=a
0