原式=[2sinxcosx+2sin²x]/[(cosx-sinx)/cosx]
=[2sinxcosx(sinx+cosx)]/[cosx-sinx]
=[sin2x][(sinx+cosx)²]/[cos²x-sin²x]
=[sin2x][1+sin2x]/[cos2x]
sin2x=-cos[π/2+2x]=-cos[2(x+π/4)]=-[2cos²(π/4+x)-1]=7/25
因17π/12
原式=[2sinxcosx+2sin²x]/[(cosx-sinx)/cosx]
=[2sinxcosx(sinx+cosx)]/[cosx-sinx]
=[sin2x][(sinx+cosx)²]/[cos²x-sin²x]
=[sin2x][1+sin2x]/[cos2x]
sin2x=-cos[π/2+2x]=-cos[2(x+π/4)]=-[2cos²(π/4+x)-1]=7/25
因17π/12