1.已知二次函数y=(x-2m)²+m-3,m= ( )图像的顶点在x轴上,m=( )图像的定点在y轴上,m=

1个回答

  • 1、

    y = (x-2m)²+(m-3),由于x²项的系数为正数,抛物线开口向上

    当x = 2m,y = m-3

    当顶点在x轴上,y = 0,0 = m-3,m = 3

    该方程是y = (x-6)²

    当顶点在y轴上,x = 0,m = 0

    该方程是y = x²-3

    当图像经过原点(0,0),则

    0 = (0-2m)²+(m-3)

    4m²+m-3 = 0

    m = -1 or m = 3/4

    该方程是y = (x+2)²-4

    2、

    y = x²-2x-3 = (x-1)²-4,对称轴为x = 1,设C点的坐标为(1,k)

    解x²-2x-3 = 0得交点A(-1,0),B(3,0)

    AB中点M为(1,0),则建立ΔBCM,面积为1/2*ΔABC = 5

    BM = 2,CM = k

    1/2*BM*CM = 5

    2*k = 10

    k = 5

    ∴C的坐标为(1,5)

    3、(1):

    直线经过y轴,所以当x = 0,y = 3

    直线经过x轴,所以当y = 0,x = 3

    所以直线经过的两点为:C(0,3)、B(3,0)

    而抛物线亦经过B、C两点,所以将B、C的坐标分别代入,得:

    代入C点:3 = 0 + 0 + c,c = 3

    代入B点:0 = -3² + 3b + (3),b = 2

    ∴抛物线的解析式是y = -x² + 2x + 3

    (2):由图像可见,P和C是关于x = 1对称的,所以P的坐标是(2,3)

    (3):经过AP的直线方程与直线y = -x+3垂直,斜率为-1/(-1) = 1

    该方程为y - 3 = (1)(x - 2),i.e.y = x+1

    两直线方程的相交点为N(1,2),PN⊥BN

    考虑ΔBPN,PN = √[(2-1)²+(3-2)²] = √2,BN = √[(3-1)²+(0-2)²] = 2√2

    所以tan∠PBC = tan∠PBN = PN/BN = √2/(2√2) = 1/2