解不定积分被积函数:e^arcsinx;被积函数:x * sinx * e^x

1个回答

  • (1)令u=arcsinx则x=sinu

    则有:dx=cosudu

    ∴∫e^arcsinxdx=∫e^ucosudu

    (采用分部积分法)

    ∴∫e^arcsinxdx=∫e^ucosudu=e^ucosu-∫e^ucosudu

    ∴∫e^arcsinxdx=cosue^u/2

    将u=arcsinx代入即可

    (2)(此题仍然采用分部积分法)

    (uvw)'=uvw'+uv'w+u'vw

    类似于两项相乘,你自己可以算一下,答案是:∫x * sinx * e^xdx=[xe^x(sinx-cosx)+e^xcosx]/2.仅供参考(*^__^*) ·······