在平面直角坐标系XOY中,点p(x,y)为动点,已知点A(根号2,0)

2个回答

  • (1)x^2/2+y^2=1(x≠±根号2,y≠0)

    (2)设l的方程为:x=ty+1与x^2/2+y^2=1联立

    消去x得:(ty+1)^2+2y^2-2=0

    即 (t^2+2)y^2+2ty-1=0

    设M(x1,y1),N(x2,y2),MN中点为Q(x',y')

    韦达定理:

    y1+y2=-2t/(t^2+2),y1y2=-1/(t^2+2)

    y'=-t/(t^2+2),x'=ty'+1=2/(t^2+2)

    MN的垂直平分线m的方程为:

    y+t/(t^2+2)=-t[x-2/(t^2+2)]

    令x=0,得 y=t/(t^2+2)

    ∴m与y轴交点T(0,t/(t^2+2)

    ∵以MN为对角线的正方形的第三个顶点恰在Y轴上

    ∴T即是该点∴TM⊥TN

    ∴向量TM·向量TN=0

    (x1,y1-t/(t^2+2) )·(x2,y2-t/(t^2+2))=0

    x1x2+[y1-t/(t^2+2)][y2-t/(t^2+2)]=0

    (ty1+1)(ty2+1)+y1y2-t/(t^2+2)×(y1+y2)+t^2/(t^2+2)^2=0

    (t^2+1)y1y2+[t-t/(t^2+2)](y1+y2)+t^2/(t^2+2)^2+1=0

    -(t^2+1)/(t^2+2)+(t^3+t)/(t^2+2)×(-2t)/(t^2+2)+t^2/(t^2+2)^2+1=0

    ==>t^4=1==>t=±1

    ∴ 直线L方程为x= ±y+1 即x+y-1=0或x-y-1=0