∵根号3cosA=根号2cosB AB为三角形内角
∴角A、B均为锐角
∵sinA=√2sinB①,cosA=√(2/3)cosB②
∴①^2+②^2:
1=2sin^2(B)+2/3cos^2(B)
=4/3sin^2(B)+2/3sin^2(B)+2/3cos^2(B)
=4/3sin^2(B)+2/3
4/3sin^2(B)=1/3
sin^2(B)=1/4
sinB=1/2
∵角A、B为锐角 ∴B=30°
由①:A=45°
从而:C=105°
∵根号3cosA=根号2cosB AB为三角形内角
∴角A、B均为锐角
∵sinA=√2sinB①,cosA=√(2/3)cosB②
∴①^2+②^2:
1=2sin^2(B)+2/3cos^2(B)
=4/3sin^2(B)+2/3sin^2(B)+2/3cos^2(B)
=4/3sin^2(B)+2/3
4/3sin^2(B)=1/3
sin^2(B)=1/4
sinB=1/2
∵角A、B为锐角 ∴B=30°
由①:A=45°
从而:C=105°