(1)①∵∠AOB=∠COD=90°
∴∠AOB+∠BOD=∠COD+∠BOD
即∠AOD=∠BOC
②∵∠AOB=∠COD=90°,∠AOC+∠AOB+∠BOD+∠COD=360°
∴∠AOC+∠BOD=180°.
即∠AOC与∠BOD的关系为 互补.
故答案为:①∠BOD,∠BOD,=,②180°,互补;
(2)①)①∵∠AOB=∠COD=90°
∴∠AOB-∠BOD=∠COD-∠BOD
即∠AOD=∠BOC
②成立.
理由:∵∠AOB=∠COD=90°,
∴∠AOB+∠BOC+∠DOB=180°.
即:∠AOC+∠BOD=180°,
∴∠AOC与∠BOD的关系为互补.