1/2(e^a+e^b)-e^[(a+b)/2]
=1/2[e^a+e^b-2e^(a/2)*e^(b/2)]
=1/2(e^a+e^b-2√e^a*√e^b)
=1/2(√e^a-√e^b)²≥0
所以e^[(a+b)/2]≤1/2(e^a+e^b)
1/2(e^a+e^b)-e^[(a+b)/2]
=1/2[e^a+e^b-2e^(a/2)*e^(b/2)]
=1/2(e^a+e^b-2√e^a*√e^b)
=1/2(√e^a-√e^b)²≥0
所以e^[(a+b)/2]≤1/2(e^a+e^b)