已知函数f(x)=sin(x-派/6)cosx,x属于(0,派/2).(1)求函数f(x)的值域?(2)若曲线y=f(x
0
0

2个回答

  • f(x)=sin(x-π/6)cosx

    =(sinxcosπ/6-cosxsinπ/6)cosx

    =√3/2*sinxcosx-1/2*cos²x

    =√3/4sin2x-1/4*(1-cos2x)

    =√3/4sin2x+1/4*cos2x)-1/4

    =1/2sin(2x+π/6)-1/4

    ∵ x属于(0,派/2)

    ∴ 2x+π/6∈[π/6,7π/6]

    ∴ -1/2≤sin(2x+π/6)≤1

    ∴ f(x)的值域为[-1/4,1/4]

    2

    f'(x)=1/2*cos(2x+π/6)*2=cos(2x+π/6)

    曲线y=f(x)在x0处的切线

    倾斜角a属于[arctan1/2,派/4]

    ∴斜率k∈[1/2,√2/2]

    ∴1/2≤cos(2x0+π/6)≤√2/2

    ∵ 2x0+π/6∈[π/6,7π/6]

    ∴ π/4≤2x0+π/6≤π/3

    ∴π/24≤x0≤π/12

更多回答