分式计算:(b^3n-1 )*c/(a^2n+1)除以 (b^3n-2)/(a^2n)
1个回答
(b^3n-1 )*c/(a^2n+1)除以 (b^3n-2)/(a^2n)
=bc/a
相关问题
计算:b^(3n-1)/a^(2n-1)×c÷b^(3n-2)/a^2n
分式计算(1)(a^2 -b^ 2)除以(a-b/a)^ 2 (2){(-b^ 2n+1/2a)^ 3}^ 2
分式计算(1)(a^2 -b^ 2)除以(a-b/a)^ 2 (2){(-b^ 2n+1/2a)^ 3}^ 2
已知n为大于1的自然数,计算b^3n-1c^3/a^2n+1 *a^2n/b^3n-2
计算 (a-b)^2n - 2(b-a)^2n-1 - 2/3 (b-a)^2n - 1/2(a-b)^2n-1
b^3n-1 c^2/a^2n+1×a^2n-1/b^3n-2=
b^3n-1/a^2n-1×c÷b^3n-2/a^2n
计算:(2a-3b)*2n x (3b-2a)*2n-1 x (3b-2a)*4n x (2a-3b)*2n+1
计算a^n=2 b^n=3 a^2n+b^3n=( )
(a-b)(a^(n-1)-b^(n-1))=(a-b)^2(a^(n-2)+a^(n-3)b+……+ab^(n-3)+