sin2θ+sinθcosθ-2cos2θ
=3sinθcosθ-4(cosθ)^2+2
=[3sinθcosθ-4(cosθ)^2+2(sinθ)^2+2(cosθ)^2]/[(sinθ)^2+(cosθ)^2](分子分母同除(cosθ)^2)
=[3tanθ-4+2(tanθ)^2+2]/[(tanθ)^2+1]
=(6-4+8+2)/(4+1)
=12/5
sin2θ+sinθcosθ-2cos2θ
=3sinθcosθ-4(cosθ)^2+2
=[3sinθcosθ-4(cosθ)^2+2(sinθ)^2+2(cosθ)^2]/[(sinθ)^2+(cosθ)^2](分子分母同除(cosθ)^2)
=[3tanθ-4+2(tanθ)^2+2]/[(tanθ)^2+1]
=(6-4+8+2)/(4+1)
=12/5