f'(x)=cosx *ln(1+t^2)=cosx*ln[1+(sinx)^2 ] (sinx)^2~x^2 等价无穷小
g'(x)=3x^2+4(tanx)^3*1/cosx^2~3x^2
所以lim(x->0) f(x)/g(x)= lim(x->0)f'(x)/g'(x)=lim(x->0)x^2/3x^2=1/3
即x-->0时,f(x)是g(x)的同阶无穷小
f'(x)=cosx *ln(1+t^2)=cosx*ln[1+(sinx)^2 ] (sinx)^2~x^2 等价无穷小
g'(x)=3x^2+4(tanx)^3*1/cosx^2~3x^2
所以lim(x->0) f(x)/g(x)= lim(x->0)f'(x)/g'(x)=lim(x->0)x^2/3x^2=1/3
即x-->0时,f(x)是g(x)的同阶无穷小