(1)连接OD
∵OC∥AD
∴∠COD=∠ODA,∠BOC=∠OAD
∵OA=OD
∴∠OAD=∠ODA
∴∠BOC=∠DOC
∵OB=OD,OC=OC
∴△BOC≌△DOC
∴∠ODC=∠OBC=90°
∴CD是圆O的切线
(2)P在DE的中点
证明:
延长BC,AD相交于点F
∵OA=OB,OC∥AF
∴BC=CF
∵DE∥BF
∴DP/FC=AP/AC=PE/BC
∵FC=BC
∴DP=PE
亲,给个好评吧.
(1)连接OD
∵OC∥AD
∴∠COD=∠ODA,∠BOC=∠OAD
∵OA=OD
∴∠OAD=∠ODA
∴∠BOC=∠DOC
∵OB=OD,OC=OC
∴△BOC≌△DOC
∴∠ODC=∠OBC=90°
∴CD是圆O的切线
(2)P在DE的中点
证明:
延长BC,AD相交于点F
∵OA=OB,OC∥AF
∴BC=CF
∵DE∥BF
∴DP/FC=AP/AC=PE/BC
∵FC=BC
∴DP=PE
亲,给个好评吧.