(I)∵a n+1=2(a n-n+1)
∴
a n+1 -2(n+1)
a n -2n =
2( a n -n+1)-2(n+1)
a n -2n =
2( a n -2n)
a n -2n =2
∴数列{a n-2n}是以a 1-2=2为首项,以2为公比的等比数列
(II)由(I)可得
a n-2n=2•2 n-1=2 n
∴a n=2 n+2n
∴ S n =
2- 2 n+1
1-2 +
(2+2n)n
2 =2 n+1-2+n 2+n
(I)∵a n+1=2(a n-n+1)
∴
a n+1 -2(n+1)
a n -2n =
2( a n -n+1)-2(n+1)
a n -2n =
2( a n -2n)
a n -2n =2
∴数列{a n-2n}是以a 1-2=2为首项,以2为公比的等比数列
(II)由(I)可得
a n-2n=2•2 n-1=2 n
∴a n=2 n+2n
∴ S n =
2- 2 n+1
1-2 +
(2+2n)n
2 =2 n+1-2+n 2+n