证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE
∴△ABD≌△BCE
(2)由(1)△ABD≌△BCE得∠BAD=∠CBE
∠FAE=60°-∠BAD=60°-∠CBE=∠ABE
∠AFE=∠ABF+∠BAD=∠ABF+∠CBE=60°=∠BAE
(∠AEF=∠BEA)
∴⊿AFE∽⊿BAE
∴EF:AE=AE:BE
即证:AE²=BE*EF
证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE
∴△ABD≌△BCE
(2)由(1)△ABD≌△BCE得∠BAD=∠CBE
∠FAE=60°-∠BAD=60°-∠CBE=∠ABE
∠AFE=∠ABF+∠BAD=∠ABF+∠CBE=60°=∠BAE
(∠AEF=∠BEA)
∴⊿AFE∽⊿BAE
∴EF:AE=AE:BE
即证:AE²=BE*EF