解题思路:设正方形的边长为a,根据正方形的性质分别表示出B,C两点的坐标,再将C的坐标代入函数中从而可求得k的值.
设正方形的边长为a,则B的纵坐标是a,
把点B代入直线y=2x的解析式,设点B的坐标为([a/2],a),则点C的坐标为([a/2]+a,a),
把点C的坐标代入y=kx中得,a=k([a/2]+a),
解得k=[2/3].
点评:
本题考点: 一次函数的性质.
考点点评: 本题考查正方形的性质及正比例函数的综合运用,此题是一道比较好的题目,难度适中.
解题思路:设正方形的边长为a,根据正方形的性质分别表示出B,C两点的坐标,再将C的坐标代入函数中从而可求得k的值.
设正方形的边长为a,则B的纵坐标是a,
把点B代入直线y=2x的解析式,设点B的坐标为([a/2],a),则点C的坐标为([a/2]+a,a),
把点C的坐标代入y=kx中得,a=k([a/2]+a),
解得k=[2/3].
点评:
本题考点: 一次函数的性质.
考点点评: 本题考查正方形的性质及正比例函数的综合运用,此题是一道比较好的题目,难度适中.