f(2x)-f(x)=x^2 证明其是一个一元二次函数
不妨设f(x)=ax²+bx+c
那么f(2x)-f(x)=3ax²+bx=x² 则 a=1/3 b=0
f(x)=x²/3+c 又lim(x→0)f(x)=f(0)=1 则 f(x)=x²/3+c=c=1
则f(x)=x²/3+1
f(2x)-f(x)=x^2 证明其是一个一元二次函数
不妨设f(x)=ax²+bx+c
那么f(2x)-f(x)=3ax²+bx=x² 则 a=1/3 b=0
f(x)=x²/3+c 又lim(x→0)f(x)=f(0)=1 则 f(x)=x²/3+c=c=1
则f(x)=x²/3+1