这样做比较简单:
令i=∫[(sinx)^2*cosx/(sinx+cosx)]dx
j=∫[sinx*(cosx)^2/(sinx+cosx)]dx
i+j=∫sinx*cosxdx=(1/2)∫sin2xdx
=-(1/4)cos2x+C
j-i=∫[sinxcosx*(cosx-sinx)/(sinx+cosx)]dx
=∫sinxcosxd(sinx+cosx)/(sinx+cosx)
=∫(t^2-1)/2t dt t=sinx+cosx
=t^2/4-(1/2)In|t|+C'
=sin2x/4-(1/2)In|sinx+cosx|+C
∴i=-(1/8)(sin2x+cos2x)+(1/4)In|sinx+cosx|+C