f(x)=log2(4^x+1)+kx= log2(4^x+1)+ log2(2^kx)= log2[(2^2x+1)*2^kx]
由f(x)= f(-x)得log2[(2^2x+1)*2^kx]= log2[(2^2(-x)+1)*2^k(-x)]
由此得(2^2x+1)*2^kx=(2^2(-x)+1)*2^k(-x)
整理后可得k=-1.
f(x)=log2(4^x+1)+kx= log2(4^x+1)+ log2(2^kx)= log2[(2^2x+1)*2^kx]
由f(x)= f(-x)得log2[(2^2x+1)*2^kx]= log2[(2^2(-x)+1)*2^k(-x)]
由此得(2^2x+1)*2^kx=(2^2(-x)+1)*2^k(-x)
整理后可得k=-1.