因为
S(6)=6a(1)+6×5d/2=6a(1)+15d
S(12)=12a(1)+66d
S(18)=18a(1)+153d
而
S(12)-S(6)=6a(1)+51d
S(18)-S(12)=6a(1)+87d
可见,S(6)、S(12)-S(6)、S(18)-S(12)之间满足
2[S(12)-S(6)]=S(6)+[S(18)-S(12)]
即三者成等差数列.
实际上,上面的结论可推广到S(n)、S(2n)-S(n)、S(3n)-S(2n)的情形.
因为
S(6)=6a(1)+6×5d/2=6a(1)+15d
S(12)=12a(1)+66d
S(18)=18a(1)+153d
而
S(12)-S(6)=6a(1)+51d
S(18)-S(12)=6a(1)+87d
可见,S(6)、S(12)-S(6)、S(18)-S(12)之间满足
2[S(12)-S(6)]=S(6)+[S(18)-S(12)]
即三者成等差数列.
实际上,上面的结论可推广到S(n)、S(2n)-S(n)、S(3n)-S(2n)的情形.