两边同除以2^(n+1)
得a(n+1)/2^(n+1)=an/2^n+1/2^(n+1)
令bn=an/2^n,b1=1/2
有b(n+1)=bn+1/2^(n+1)
bn-b(n-1)=2^(-n)
叠加得bn=1-2^(-n)
an=bn*2^n=2^n-1
两边同除以2^(n+1)
得a(n+1)/2^(n+1)=an/2^n+1/2^(n+1)
令bn=an/2^n,b1=1/2
有b(n+1)=bn+1/2^(n+1)
bn-b(n-1)=2^(-n)
叠加得bn=1-2^(-n)
an=bn*2^n=2^n-1