(1)
∵ ∠B =42°,∠C =68°
∴ ∠BAC = 180° -∠B-∠C = 180° -42°-68° = 70°
∵ AD是∠BAC的平分线
∴ ∠DAC=∠DAB=1/2∠BAC = 35°
∵ AE是BC上的高
∴ AE⊥BC,即∠AEC=90°
∴ ∠EAC = 90° -∠C = 90°-68° = 22°
∴ ∠DAE= ∠DAC-∠EAC = 35°-22° = 13°
(2)
同(1)可得
∠DAE =∠DAC-∠EAC =1/2∠BAC-(90° -∠C) = 1/2(180°-α-β)- 90°+β = 1/2(β-α)
--------------------
梳理知识,帮助别人,愉悦自己.
“数理无限”团队欢迎你