因为 an = (a(n-1)-4)/(a(n-1)+5),所以
an+2 = (a(n-1)-4)/(a(n-1)+5)+2 = (3a(n-1)+6)/(a(n-1)+5).
两边取倒数得到:
1/(an+2) = (a(n-1)+5)/(3a(n-1)+6) = 1/3+1/(a(n-1)+2),从而有
1/(an+2)-1/(a(n-1)+2) = 1/3,因此数列 {1/(an+2)} 是以 1/(a1+2) = 1/3 为首项,1/3 为公差的等差数列,所以 1/(an+2) = n/3.
由此容易看出 an = 3/n-2.即数列 {an} 的通项公式为 an = 3/n -2.