1.数列{an}中,a1=2,a(n+1)=an+cn(c是常数,n属于N+)且成公比不为1的等比数列,(1)求c的值

1个回答

  • 1.(1)a1=2,a(n+1)=an+cn ,则 a2=2+2c,a3=2+2c+3c=2+5c ,a1,a2,a3成公比不为1的等比数列则 a2/a1=a3/a2 ∴(2+2c)/2=(2+5c)/(2+2c) 即(2+2c)*(2+2c)=2*(2+5c)整理得 2c^2-c=0 c=0或c=1/2 ∴a1,a2,a3成公比不为1的等比数列则c≠0所以c=1/2 (2)将c=1/2代入公式得 ,a(n+1)=an+cn=an+(1/2)n 2.(1)a1=3,所以S2=6+d,S3=9+3d,b1=1,b2=q,b3=q^2∴(6+d)q=64,(9+3d)q^2=960相除 (9+3d)/(6+d)*q=15,q=15(6+d)/(9+3d),代入(6+d)q=64∴15(6+d)^2=64(9+3d) 因为是正数,所以d=2∴q=15(6+d)/(9+3d)=8,∴an=2n+1,bn=8^(n-1) (2)Sn=2*n(n+1)/2+n=n^2+2n=n(n+2),1/Sn=1/2*[1/n-1/(n+2)] ∴1/S1+1/S2……+1/Sn =1/2*[1/1-1/3+1/2-1/4+……+1/n-1/(n+2)] =1/2*[1+1/2-1/(n+1)-1/(n+2)] =(3n^2+13n)/(4n^2+12n+8) 4.(1)a(n+1)=(2an)/(an+1),1/a(n+1)=(an+1)/2an=(1/2)*(1+1/an),1/a(n+1)-1=(1/2)*(1/an-1) ∴{1/an-1}为等比数列!(2)∵{1/an-1}为等比数列!首项为1/a1-1=1/2 公比为1/2 ∴1/an-1=1/2*(1/2)^(n-1)=1/2^n,1/an=1+1/2^n bn=n/an=n*(1/an)=n*(1+1/2^n)=n+n/2^n Sn=1+1/2+2+2/2^2+..+n+n/2^n =1+2+..+n+1/2+2/2^2+...+n/2^n 其中:1+2+...+n=n*(n+1)/2,S=1/2+2/2^2+..+n/2^n S/2=1/2^2+.+(n-1)/2^n+n/2^(n+1) 相减:S/2=1/2+1/2^2+.+1/2^n-n/2^(n+1) =1-1/2^n-n/2^(n+1) S=2-1/2^(n-1)-n/2^n ∴Sn=1+1/2+2+2/2^2+..+n+n/2^n =1+2+..+n+1/2+2/2^2+...+n/2^n =n*(n+1)/2+2-1/2^(n-1)-n/2^n 5.题目好象有问题 f(X)=2^(x=2) -4?