由余弦定理,得
cosA=(b²+c²-a²)/2bc
又,b²+c²-bc=a²
即,b²+c²-a²=bc
所以,cosA=1/2
A为三角形内角,
所以,A=π/3
B+C=π-π/3=2π/3
C=2π/3-B
sinC/sinB=sin(2π/3-B)/sinB
=(sin2π/3cosB-cos2π/3sinB)/sinB
=(√3/2)cotB+(1/2)
又,sinC/sinB=c/b=1/2+√3
所以,
(√3/2)cotB+(1/2)=1/2+√3
cotB=2
tanB=1/cotB=1/2
选B.1/2