(1)由 a=a 1=s 1和 S n =
n( a n - a 1 )
2 ,
可得 a 1 =
1×( a 1 - a 1 )
2 =0,∴a=0.
(2)∵ S n =
n( a n - a 1 )
2 =
n a n
2 ,∴ S n-1 =
(n-1) • a n-1
2 .
作差可得 S n-S n-1=
n a n
2 -
(n-1) • a n-1
2 ,又S n-S n-1=a n,化简可得
a n
a n-1 =
n-1
n-2 .
∴a n =k(n-1),故数列{a n}是等差数列.
显然满足a 1=0,a 2 =p=k•(2-1),∴k=p.
∴a n =p(n-1)=pn-p.
故故数列{a n}的通项为a n =p(n-1),是首项为0,公差为p的等差数列.
(3)∵
a n -1
a n +1 =
(pn-p)-1
(pn-p)+1 <1,
lim
n→∞
(pn-p)-1
(pn-p)+1 =1 ,
故数列{
a n -1
a n +1 } 的“上渐进值”为1.