已知数列{a n }有a 1 a,a 2 p (常数p>0),对任意的正整数n,S n a 1 a 2

1个回答

  • (1)由 a=a 1=s 1和 S n =

    n( a n - a 1 )

    2 ,

    可得 a 1 =

    1×( a 1 - a 1 )

    2 =0,∴a=0.

    (2)∵ S n =

    n( a n - a 1 )

    2 =

    n a n

    2 ,∴ S n-1 =

    (n-1) • a n-1

    2 .

    作差可得 S n-S n-1=

    n a n

    2 -

    (n-1) • a n-1

    2 ,又S n-S n-1=a n,化简可得

    a n

    a n-1 =

    n-1

    n-2 .

    ∴a n =k(n-1),故数列{a n}是等差数列.

    显然满足a 1=0,a 2 =p=k•(2-1),∴k=p.

    ∴a n =p(n-1)=pn-p.

    故故数列{a n}的通项为a n =p(n-1),是首项为0,公差为p的等差数列.

    (3)∵

    a n -1

    a n +1 =

    (pn-p)-1

    (pn-p)+1 <1,

    lim

    n→∞

    (pn-p)-1

    (pn-p)+1 =1 ,

    故数列{

    a n -1

    a n +1 } 的“上渐进值”为1.