由已知条件知
1) 0 = (m^2-n) -(n^2-m) =(m-n)(m+n+1),m,n不相等,所以 m+n+1=0,即m+n=-1
2)10=m^2-n+n^2-m=m^2+n^-(m+n) =m^2+n^2+1,所以 m^2+n^2 = 9
m^3+n^3+m^2n+nm^2= (m+n)(m^2-mn+n^2) +mn(m+n)=(m+n)(m^2+n^2)= -1*9=-9
由已知条件知
1) 0 = (m^2-n) -(n^2-m) =(m-n)(m+n+1),m,n不相等,所以 m+n+1=0,即m+n=-1
2)10=m^2-n+n^2-m=m^2+n^-(m+n) =m^2+n^2+1,所以 m^2+n^2 = 9
m^3+n^3+m^2n+nm^2= (m+n)(m^2-mn+n^2) +mn(m+n)=(m+n)(m^2+n^2)= -1*9=-9