因式分解(十字交叉法)
[a(n+1)+an][(n+1)a(n+1)-nan]=0
所以a(n+1)+an=0(由于是正项数列,所以此项舍去)
或者(n+1)a(n+1)-nan=0
进而a(n+1)/an=n/(n+1)
写出来就是
a2/a1=1/2
a3/a2=2/3
...
an/a(n-1)=(n-1)/n
全部相乘得到
an/a1=1/n
所以an=1/n
因式分解(十字交叉法)
[a(n+1)+an][(n+1)a(n+1)-nan]=0
所以a(n+1)+an=0(由于是正项数列,所以此项舍去)
或者(n+1)a(n+1)-nan=0
进而a(n+1)/an=n/(n+1)
写出来就是
a2/a1=1/2
a3/a2=2/3
...
an/a(n-1)=(n-1)/n
全部相乘得到
an/a1=1/n
所以an=1/n