(1)证明:连接OD;
∵PA为⊙O切线,
∴∠OAD=90°;
在△OAD和△OBD中,
OA=OB
DA=DB
DO=DO ,
∴△OAD≌△OBD,
∴∠OBD=∠OAD=90°,
∴OB⊥BD
∴DB为⊙O的切线
(2)在Rt△OAP中;
∵PB=OB=OA,
∴OP=2OA,
∴∠OPA=30°,
∴∠POA=60°=2∠C,
∴PD=2BD=2DA=2,
∴∠OPA=∠C=30°,
∴AC=AP=3.
(1)证明:连接OD;
∵PA为⊙O切线,
∴∠OAD=90°;
在△OAD和△OBD中,
OA=OB
DA=DB
DO=DO ,
∴△OAD≌△OBD,
∴∠OBD=∠OAD=90°,
∴OB⊥BD
∴DB为⊙O的切线
(2)在Rt△OAP中;
∵PB=OB=OA,
∴OP=2OA,
∴∠OPA=30°,
∴∠POA=60°=2∠C,
∴PD=2BD=2DA=2,
∴∠OPA=∠C=30°,
∴AC=AP=3.