1:用十字交叉法,
a -1
a+1 -1
f(x)=(ax-1)[(a+1)x-1]
x1=1/a,x2=1/(a+1)
所以,函数f(x)图像与x轴相交所截得的弦长为1/[a(a+1)]
2:
Ln=|xn1-xn2|=1/a-1/(a+1)
L1+L2+L3+L4+L5+L6=1/1-1/2+1/2-1/3+...+1/6-1/7=1-1/7=6/7
1:用十字交叉法,
a -1
a+1 -1
f(x)=(ax-1)[(a+1)x-1]
x1=1/a,x2=1/(a+1)
所以,函数f(x)图像与x轴相交所截得的弦长为1/[a(a+1)]
2:
Ln=|xn1-xn2|=1/a-1/(a+1)
L1+L2+L3+L4+L5+L6=1/1-1/2+1/2-1/3+...+1/6-1/7=1-1/7=6/7