解题思路:首先由FD⊥AB于D,根据直角三角形两锐角互余得出∠BED+∠B=90°,同理,由∠ACB=90°,得出∠A+∠B=90°,然后根据同角的余角相等得出∠A=∠BED=55°.
∵FD⊥AB于D,
∴∠BED+∠B=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠A=∠BED=55°.
点评:
本题考点: 直角三角形的性质.
考点点评: 本题主要考查了直角三角形的性质以及余角的性质,比较简单.
解题思路:首先由FD⊥AB于D,根据直角三角形两锐角互余得出∠BED+∠B=90°,同理,由∠ACB=90°,得出∠A+∠B=90°,然后根据同角的余角相等得出∠A=∠BED=55°.
∵FD⊥AB于D,
∴∠BED+∠B=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠A=∠BED=55°.
点评:
本题考点: 直角三角形的性质.
考点点评: 本题主要考查了直角三角形的性质以及余角的性质,比较简单.