已知a,b,c是△abc的三边长,且方程a(1+x²)=2bx-c(1-x²)=0的两根相等,判断三

1个回答

  • 的对称性(M,N)的中心点

    到原始曲线(P,Q)上的任意点是对称于该曲线的中心点(3219米 - 对为2n-q)的应对,那就是:

    比索(PA)(PB)(PC)= Q

    比索(2M-PA)(2M-PB)(2M-PC)= 2N-Q

    上下两方程和消除的Q,后来简化为:

    为2n =(PA)(PB)(PC) - (4 - (2M-A))(对 - (2M-B))(对 - (2M-C)) - 中东= P ^ 3-P ^ 2 *(A + B + C)+ P(AB + BC + AC)-abc-

    [P ^ 3-P ^ 2 *(2M-A + 2M-B + 2M-C)+ P [(2M-A) (2M-B)+(2M-C)(2M-B)+(2M-A)(2M-C) - (2M-A)(2M-B)(2M-C)]

    = P ^ 2 *(6M-2A-2B-2C)+ P(4M(A + B + C)-12m ^ 2)+(2M-A)(2M-B)(2M-C) -abc

    因为P,Q是任意的都是真的,所以

    6M-2A-2B-2C = 0

    4米( A + B + C)-12m ^ 2 = 0

    为2n =(2M-A)(2M-B)(2M-C)-abc

    因此,M =(A + B + C)/ 3,住宅N =(2B + 2C-A)(2A + 2C-B)(2A + 2B-C)/ 6-ABC /对称坐标2

    - 产品中心(M,N)