解题思路:(1)由题设知
a
2k+1
a
2k−1
=4
,由此能求出a1+a3+a5+…+a2k-1的值.
(2)①由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,再由
a
2k
=
a
2k+1
q
k
,能够证明{bk}是等差数列,且公差为1.
②由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk.
(1)∵数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比qk=2(k∈N*),
∴
a2k+1
a2k−1=4,
∴a1+a3+a5+…+a2k-1=
1−4k/1−4]=[1/3(4k−1).
(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk,
∴2a2k+1=a2k+a2k+2,
而a2k=
a2k+1
qk],a2k+2=a2k+1•qk+1,
∴[1
qk+qk+1=2,则qk+1−1=
qk−1
qk,
得
1
qk+1−1=
qk
qk−1,
∴
1
qk+1−1−
1
qk−1=1,即bk+1-bk=1,
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有a22=1×a3=a2+2,
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
即
1
qk−1=k,得qk=
k+1/k],
∴
a2k+1
a2k−1=
(k+1)2
k2,
则a2k+1=
a2k+1
a2k−1
点评:
本题考点: 等差数列与等比数列的综合;数列的求和.
考点点评: 本题考查数列的前n项和的计算,等差数列的证明,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意计算能力的培养.