(2014•上海二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为

1个回答

  • 解题思路:(1)由题设知

    a

    2k+1

    a

    2k−1

    =4

    ,由此能求出a1+a3+a5+…+a2k-1的值.

    (2)①由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,再由

    a

    2k

    a

    2k+1

    q

    k

    ,能够证明{bk}是等差数列,且公差为1.

    ②由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk

    (1)∵数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比qk=2(k∈N*),

    a2k+1

    a2k−1=4,

    ∴a1+a3+a5+…+a2k-1=

    1−4k/1−4]=[1/3(4k−1).

    (2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk

    ∴2a2k+1=a2k+a2k+2

    而a2k=

    a2k+1

    qk],a2k+2=a2k+1•qk+1

    ∴[1

    qk+qk+1=2,则qk+1−1=

    qk−1

    qk,

    1

    qk+1−1=

    qk

    qk−1,

    1

    qk+1−1−

    1

    qk−1=1,即bk+1-bk=1,

    ∴{bk}是等差数列,且公差为1.

    ②∵d1=2,∴a3=a2+2,

    则有a22=1×a3=a2+2,

    解得a2=2,或a2=-1.

    (i)当a2=2时,q1=2,∴b1=1,

    则bk=1+(k-1)×1=k,

    1

    qk−1=k,得qk=

    k+1/k],

    a2k+1

    a2k−1=

    (k+1)2

    k2,

    则a2k+1=

    a2k+1

    a2k−1

    点评:

    本题考点: 等差数列与等比数列的综合;数列的求和.

    考点点评: 本题考查数列的前n项和的计算,等差数列的证明,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意计算能力的培养.