证明
∵ b^2=c(c+a)
∴b^2-c^2=ca.①
又∵a^2=b(b+c).②
①×②得
a^2(b+c)(b-c)=ab(b+c)
∴a(b-c)=bc
∴ab=bc+ac
∴1/a+1/b=1/c