楼主的做法是对的,但结果有一点问题
∵空间的点的轨迹,如果坐标只满足一个关于x,y,z的方程,那么轨迹是曲面;
如果满足两个方程组成的方程组,那么则是曲线
OC=αOA+βOB (OAOBOC都是加向量符号的),其中,α,β∈R,α+β=1,则点C的轨迹:就是直线AB,这在平面内成立,在空间也成立.
但你如果得到轨迹是X+2Y=5,那就是平面了,事实上,z不是没有限制,
而是z=0
因此轨迹平面X+2Y=5与平面z=0的交线,是直线.答案选B
楼主的做法是对的,但结果有一点问题
∵空间的点的轨迹,如果坐标只满足一个关于x,y,z的方程,那么轨迹是曲面;
如果满足两个方程组成的方程组,那么则是曲线
OC=αOA+βOB (OAOBOC都是加向量符号的),其中,α,β∈R,α+β=1,则点C的轨迹:就是直线AB,这在平面内成立,在空间也成立.
但你如果得到轨迹是X+2Y=5,那就是平面了,事实上,z不是没有限制,
而是z=0
因此轨迹平面X+2Y=5与平面z=0的交线,是直线.答案选B