如图,点P是双曲线y=k1/x(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点 ,交

5个回答

  • (1) ; … ………………………………3分

    (2)①EF‖AB. ……………………………………4分

    证明:如图,由题意可得A(–4,0),B(0,3),,.

    ∴PA=3,PE= ,PB=4,PF= .

    ∴ ,

    ∴ . ………………………… 6分

    又∵∠APB=∠EPF.

    ∴△APB ∽△EPF,∴∠PAB=∠PEF.

    ∴EF‖AB. …………………………… 7分

    ②S2没有最小值,理由如下:

    过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.

    由上知M(0,),N( ,0),Q( ,). ……………… 8分

    而S△EFQ= S△PEF,

    ∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN

    = . ………………………… 10分

    当 时,S2的值随k2的增大而增大,而0<k2<12. …………… 11分

    ∴0<S2<24,s2没有最小值. …………………………… 12分

    说明:1.证明AB‖EF时,还可利用以下三种方法.方法一:分别求出经过A、B两点和经过E、F两点的直线解析式,利用这两个解析式中x的系数相等来证明AB‖EF;方法二:利用 = 来证明AB‖EF;方法三:连接AF、BE,利用S△AEF=S△BFE得到点A、点B到直线EF的距离相等,再由A、B两点在直线EF同侧可得到AB‖EF.

    2.求S2的值时,还可进行如下变形:

    S2= S△PEF-S△OEF=S△PEF-(S四边形PEOF-S△PEF)=2 S△PEF-S四边形PEOF,再利用第(1)题中的结论.