如图,△ABC是等边三角形,BD是中线,DE⊥BC于点E.CE和CB有怎样的数量关系?请你说明理由.
1个回答
CB=4CE
证明:
∵△ABC是等边三角形,D是AC中点
∴BD⊥AC,∠CBD=30°
∴BC=2CD
∵∠C=60°
∴∠CDE=30°
∴CD=2CE
∴BC=4CE
相关问题
如图,三角形ABC是等边三角形,BD是中线,DE垂直BC于点为E,CE和CB有怎样的数量关系?请说明理由
三角形ABC是等边三角形,BD是中线DE垂直BC于点E,CE和BE有怎样的数量关系?请你说明理由 要看清楚是CE和BE!
三角形abc是等边三角形,bd是中线,de垂直bc于点e,ce和be有怎样的数量关系,并证明
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=AD.(1)求证:BD=DE
如图,△ABC为等边三角形,BD为中线,延长BC到E,使DE=BD,求证:CE=½BC
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=AD.
已知:如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.
AD、CE是三角形ABC的高,AD=2CE.AB与BC有怎样的数量关系?请说明理由
△ABC是等边三角形,BD是△ABC的中线,延长BC到点E,使CE=CD,试判断△BDE的形状.并说明理由.
△ABC为等边三角形,BD是中线,延长BC至E,使CE=CD,求证:DB=DE.