原式=sin(-4×360°+120°)×cos(4×360°-30°)+cos(180°-45°)×(-sin30°)+tan(2×360°+45°)
=sin120°×cos30°+(-cos45°)×(-sin30°)+tan45°
=sin(180°-60°)×cos30°+cos45°×sin30°+tan45°
=sin60°×cos30°+cos45°×sin30°+tan45°
=√3/2×√3/2+√2/2×1/2+1
=3/4+√2/4+1
=(7+√2)/4
原式=sin(-4×360°+120°)×cos(4×360°-30°)+cos(180°-45°)×(-sin30°)+tan(2×360°+45°)
=sin120°×cos30°+(-cos45°)×(-sin30°)+tan45°
=sin(180°-60°)×cos30°+cos45°×sin30°+tan45°
=sin60°×cos30°+cos45°×sin30°+tan45°
=√3/2×√3/2+√2/2×1/2+1
=3/4+√2/4+1
=(7+√2)/4