设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.