外层函数 y = log (1/2) u 是减函数
所以 内层 u = 3x² - ax+5 在 (-1,+∞) 是增函数
且 u > 0
u = 3x² - ax + 5 = 3(x - a/6)² + 5 - a²/12
对称轴 x = a/6 ≤ - 1 即 a≤ - 6
当 x = -1时,u = 3+a+5 ≥ 0 即 a ≥ - 8
所以 a∈[ - 8 ,- 6 ]
外层函数 y = log (1/2) u 是减函数
所以 内层 u = 3x² - ax+5 在 (-1,+∞) 是增函数
且 u > 0
u = 3x² - ax + 5 = 3(x - a/6)² + 5 - a²/12
对称轴 x = a/6 ≤ - 1 即 a≤ - 6
当 x = -1时,u = 3+a+5 ≥ 0 即 a ≥ - 8
所以 a∈[ - 8 ,- 6 ]