已知数列{an}的前项和为Sn,a1=1/4,且2Sn=2S(n-1)+2a(n-1)+1,(n≧2)数列{bn}满足b

1个回答

  • 2Sn=2Sn-1+2a(n-1)+1

    2Sn-2Sn-1=2an=2a(n-1)+1

    an-a(n-1)=1/2,为定值.

    a1=1/4

    数列{an}是以1/4为首项,1/2为公差的等差数列

    an=1/4+(n-1)(1/2)=n/2 -1/4

    3bn-b(n-1)=n

    3bn-3(1/2)n+3/4=b(n-1)-(n-1)/2+1/4

    [bn-n/2 +1/4]/[b(n-1)-(n-1)/2+1/4]=1/3,为定值.

    b1-1/2+1/4=3/4-1/2+1/4=1/2

    数列{bn-n/2 +1/4}是以1/2为首项,1/3为公比的等比数列

    bn- n/2+1/4=(1/2)(1/3)^(n-1)

    bn=n/2 +(1/2)(1/3)^(n-1) -1/4

    bn-an=n/2+(1/2)(1/3)^(n-1) -1/4 -n/2+1/4=(1/2)(1/3)^(n-1)

    b1-a1=3/4-1/4=1/2,同样满足.

    (bn-an)/[b(n-1)-a(n-1)]=1/3,为定值.

    数列{bn-an}是以1/2为首项,1/3为公比的等比数列.

    bn=n/2+(1/2)(1/3)^(n-1) -1/4

    Tn=(1+2+...+n)/2+(1/2)[1-(1/3)^n]/(1-1/3)-n/4

    =n^2/4-(1/4)/3^(n-1)+3/4