1/x(x+2)+1/(x+2)(x+4)+.+1/(x+2012)(x+2014)
=1/2×[1/x-1/(x+2)+1/(x+2)-1/(x+4)+······+1/(x+2012)-1/(x+2014)]
=1/2×[1/x-1/(x+2014)]
=1/2×(x+2014-x)/[x(x+2014)]
=2014/[2x(x+2014)]
1/x(x+2)+1/(x+2)(x+4)+.+1/(x+2012)(x+2014)
=1/2×[1/x-1/(x+2)+1/(x+2)-1/(x+4)+······+1/(x+2012)-1/(x+2014)]
=1/2×[1/x-1/(x+2014)]
=1/2×(x+2014-x)/[x(x+2014)]
=2014/[2x(x+2014)]