[y(x-y)-x(x+y)]/(x^2-y^2)÷(x^2+y^2)/x+y
=(yx-y^2-x^2-xy)/(x+y)(x-y)*(x+y)/(x^2+y^2)
=-(x^2+y^2)/(x+y)(x-y)*[(x+y)/(x^2+y^2)]
=-1/(x-y)
=-1
[y(x-y)-x(x+y)]/(x^2-y^2)÷(x^2+y^2)/x+y
=(yx-y^2-x^2-xy)/(x+y)(x-y)*(x+y)/(x^2+y^2)
=-(x^2+y^2)/(x+y)(x-y)*[(x+y)/(x^2+y^2)]
=-1/(x-y)
=-1