解题思路:根据变量符合正态分布,和所给的μ和σ的值,根据3σ原则,得到P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,两个式子相减,根据对称性得到结果.
∵随机变量X服从正态分布N(μ,σ2),P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,μ=4,σ=1,
∴P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,
∴P(2<X≤6-P(3<X≤5)=0.9544-0.6826=0.2718,
∴P(5<X<6)=[1/2]×0.2718=0.1359
故答案为:0.1359
点评:
本题考点: 正态分布曲线的特点及曲线所表示的意义.
考点点评: 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.