解题思路:(1)可证明△ABD≌△ACE,∠B=∠ACE=60°,可得到∠BCE的度数;
(2)过D作DF⊥BC,交CA延长线于F,易证:△DCE≌△DAF,得∠BCE=∠DFA=45°;
(3)同理,当∠FDA=120°时,可证△DCE≌△DAF,得∠BCE=∠DFA=30°;
(1)如图,且AB=AC,DA=DE,∠BAC=∠ADE=60°
∴△ABC和△ADE是等边三角形,
∴∠BAD+∠DAC=∠EAC+∠DAC=60°,AD=AE,∠BCA=60°,
即,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠B=∠ACE=60°,
∴∠BCE=∠BCA+∠ACE=120°;
(2)如图,过D作DF⊥BC,交CA延长线于F,
∵∠BAC=∠FDC=90°,
∴∠ACB=∠DFC=45°,
∴在直角△FDC中:DF=DC,
又∵∠FDA+∠ADC=∠CDE+∠ADC=90°,
∴∠FDA=∠CDE
又∵DA=DE,
∴△FDA≌△CDE,
∴∠DFA=∠BCE,
∴∠BCE=45°;
同理,过D作DF⊥BC,AC于点F时,∠DFA=∠BCE=135°.
综上所述,∠BCE=45°或∠BCE=135°;
(3)如图,延长CA到点F,使AF=AC,连接FD.同理当∠FDC=120°时,
∵∠ADE=∠BAC=120°,
∴∠FDA+∠ADC=∠CDE+∠ADC,∠ACB=30°,
∴∠FDA=∠CDE,∠DFC=∠ACB=30°,DF=DC,
又AD=DE,
∴△FDA≌△CDE,
∴∠DCE=∠DFA=30°.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题主要考查了全等三角形的判定和性质,作辅助线,将问题转化为两个全等的三角形中解答,是解答本题的关键,注意挖掘本题中的隐含条件,以及知识点的熟练应用.