(1)∵1=sin2α+cos2α,tanα=−
1
2.
∴原式=
sin2α+cos2α
sin2α−sinαcosα−2cos2α=
sin2α
cos2α+
cos 2α
cos2α
sin2α
cos2α−
sin αcosα
cos2α−
2cos 2α
cos2α=
tan2α+1
tan2α−tanα−2=
1
4+1
1
4+
1
2−2=−1;
(2)∵由-180°<α<-90°,得-105°<α+75°<-15°,
∴sin(75°+α)=−
1−cos2(75°+α)=−
2
2
3,
∵cos(15°-α)=cos[90°-(75°+α)]=sin(75°+α)
∴cos(15°-α)=−
2
2
3.