设数列{an}为等差数列,{bn}为单调递增的等比数列,且a2=-9,b2=8,a1+b1=b3+a3=1.
2个回答
an=-3-6(n-1)=9-6n
bn=4*2^(n-1)
问题(2)公式正确吗?
相关问题
设{an}为等差数列,{bn}为等比数列,且a1=b1=1,a3+a5=b4,b2b3=a8
设数列{an}、{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,{bn
设数列an是等差数列,bn为等比数列,若a1=b1=1,a2+a4=b3,b2×b4=a3,求数列an,bn的通项公式
设﹛an﹜为等差数列,﹛bn﹜为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3
{an}为等差数列,{bn}为等比数列,且b1=a1^2,b2=a2^2,b3=a3^2
设{an}为等差数列,且等比数列{bn}中有b1=a1^2,b2=a2^2,b3^2(a1
设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列,{bn
设{an}为等差数列{bn}为等比数列,切a1=b1=1.a2+a4=b3.b2b4=a3.
数列{A n}为递增等差数列,且A3×A6=55,A1+A8=16.若An=B1/2+B2/2+……+Bn/2,求数列{
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}的