Y=√3(Cosx)^2+(1/2)Sin2x
=(√3/2)(1+Cos2x)+(1/2)Sin2x
=√3/2+(√3/2)Cos2x+(1/2)Sin2x
=√3/2+Sin(π/6)Cos2x+Cos(π/6)Sin2x
=√3/2+Sin(π/6+2x)
-1≤Sin(π/6+2x)≤1
√3/2-1≤√3/2+Sin(π/6+2x)≤√3/2+1
√3/2-1≤Y≤√3/2+1
最大值为√3/2+1.
Y=√3(Cosx)^2+(1/2)Sin2x
=(√3/2)(1+Cos2x)+(1/2)Sin2x
=√3/2+(√3/2)Cos2x+(1/2)Sin2x
=√3/2+Sin(π/6)Cos2x+Cos(π/6)Sin2x
=√3/2+Sin(π/6+2x)
-1≤Sin(π/6+2x)≤1
√3/2-1≤√3/2+Sin(π/6+2x)≤√3/2+1
√3/2-1≤Y≤√3/2+1
最大值为√3/2+1.